
1 
 

Magnetic field                                                        07/05/2025 

Link with the electrostatic field 

Pascal DUBOIS 

 

 

 

Key words: special relativity; magnetic field; electromagnetic field; electrostatic field; electrostatic 

interaction; charge; electromagnetic force; Lorentz force; Mach principle. 

 

Summary: 

We place ourselves in the weakly relativistic framework (allowing terms of order v4/c4 to be neglected 

in the calculation). From the fundamental principle of dynamics, we establish the equation giving the 

transform of the force applied to a moving body in a change of Galilean reference frame.  

Applied to the problem of electrostatic interaction between two moving charges, this equation gives 

the expression of the Lorentz force, which introduces a magnetic field in addition to the electrostatic 

field. 

Then, using a geometric approach based on a physical understanding of electrostatic interaction, we 

show that the same result can be obtained within the framework of classical mechanics. 

Taking into account the time shift in the interaction, linked to the distance between the charges, leads 

to a variation in the rotation of the segment joining them and a variation in their distance, compared 

with the calculation made when one of the charges is fixed. These variations result in a corrective force 

to the electrostatic force, which restores the Lorentz force. 

The relativistic approach gives an equivalent result because the desynchronisation of the clocks 

corresponds to a time shift identical to that of the electrostatic interaction. It therefore seems abusive  

to consider the magnetic field as a consequence of the theory of relativity.  

Unlike the electrostatic field, the magnetic field does not involve any exchange of energy with the 

sources. It is a purely vector field, which should be considered as a tool for correcting a calculation that 

does not fully model the interaction of charges with each other as they move. 
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1. Transform of force by change of reference frame 

 

1.1.   Force applied to a moving body 

The concept of force is associated with the concepts of energy and momentum.  

A body with a total energy W  has an associated mass m such that:           𝑊 = 𝑚 𝑐2                           (1)                    

This is the equivalence relationship between mass and energy. 1 

For a body with velocity   �⃗� , the momentum is defined as:                            𝑝 = 𝑚 �⃗�                                (2) 

Total energy includes kinetic energy, so it varies with the speed of the body, as does mass.2 

Consider the derivative of momentum with respect to time : 

                                                          𝑑𝑝/𝑑𝑡 = 𝑑(𝑚 �⃗�)/𝑑𝑡                                                                       

We can write :                             (𝑑𝑝/𝑑𝑡)(𝑣 ⃗⃗⃗ ⃗ 𝑑𝑡)  = (�⃗� �⃗�) 𝑑𝑚 + 𝑚 (�⃗� 𝑑𝑣⃗⃗ ⃗⃗⃗) 

                                                                                       =  𝑣2 𝑑𝑚 + 𝑚 𝑣 𝑑𝑣    

                                                          with: 𝑣 = ∥ �⃗� ∥             and :          𝑑𝑣 = ∥ �⃗�  + 𝑑𝑣⃗⃗ ⃗⃗⃗ ∥ −  ∥ �⃗� ∥       

Given (1):                                        (𝑑𝑝/𝑑𝑡)(𝑣 ⃗⃗⃗ ⃗ 𝑑𝑡) = (𝑣2/𝑐2) 𝑑𝑊 +  (𝑣 𝑑𝑣/𝑐2)                                     (3) 

The fundamental principle of dynamics postulates that (𝑑𝑝/𝑑𝑡) represents the force 𝐹⃗⃗⃗⃗  whose 

work,(𝑑𝑝/⃗⃗⃗⃗⃗𝑑𝑡)(𝑣 ⃗⃗⃗ ⃗ 𝑑𝑡) , is equal to the variation in energy 𝑑𝑊  of the body under the action of this 

force. 

So:                                                       �⃗� =  𝑑𝑝/𝑑𝑡 = 𝑑(𝑚 �⃗�)/𝑑𝑡                                                                        

and, given (3):                                 𝑑𝑊 = (𝑣2/𝑐2) 𝑑𝑊 +  (𝑣 𝑑𝑣/𝑐2) 𝑊                                                      (4) 

Equation (4) can be written as : 

                                                          𝑑𝑊/𝑊 = (𝑣 𝑑𝑣/𝑐2)/(1 −  𝑣2/𝑐2) 

By integration we obtain:             𝑊 =  𝛾 𝑊0 =  𝛾 𝑚0 𝑐2     with:   𝛾 =  1 /√1 −  𝑣2/𝑐2                      (5) 

and therefore:                                 𝑝 = 𝛾 𝑚0 �⃗�                                                                                                 (6) 

                                                             �⃗� = 𝑑(𝛾 𝑚0 �⃗�)/𝑑𝑡            𝑚0 being the rest mass.                            (7)                                

We are going to examine how the force is modified by a change of reference frame.                                                

 

 
1 Also known as the "Einstein relationship". 
2 It should be remembered that, in our approach to relativity, the term "mass" is not reserved for mass at rest 
because the latter is not invariant to a change of reference frame 
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1.2.   Change of reference frame 

Consider two Galilean reference frames Σ (𝑥, 𝑦, 𝑧, 𝑡 ) and Σ' (𝑥′, 𝑦′, 𝑧′, 𝑡′ ) in uniform rectilinear relative 

motion parallel to the axes (𝑥 )and (𝑥’ ). Let us denote by �⃗⃗� the speed of Σ' relative to Σ. 

For an experiment taking place in the Σ reference frame, the equations linking the coordinates in the 

two reference frames are written :3 

                                                                              𝑥 = 𝑥′ + 𝑢 𝑡′ 

                                                                              𝑦 = 𝑦′ 

                                                                              𝑧 = 𝑧′ 

                                                                              𝑡 = 𝑡′ + 𝑢 𝑥′/𝑐2                                                                     (8) 

As a result, the relationship between a velocity �⃗� in Σ and the corresponding velocity �⃗�′ incan be 

written in the following simple vector form: 

                                                                                �⃗� = (𝑣′⃗⃗ ⃗⃗ +  �⃗⃗�)/(1 +  �⃗⃗� 𝑣′⃗⃗ ⃗⃗ /𝑐2)                                              (9) 

We will consider the case where the velocities are sufficiently low compared with 𝑐  that the terms of 

order 𝑣4/𝑐4 can be neglected in the calculation. The above equation can be written as:  

                                                                

                                                                                �⃗� = (𝑣′⃗⃗ ⃗⃗ +  �⃗⃗�)(1 −  �⃗⃗� 𝑣′⃗⃗ ⃗⃗ /𝑐2)                                                (9a) 

 

We are looking for the relationship between the forces associated with variations in speed �⃗� and 𝑣′⃗⃗⃗ ⃗ 

                                       �⃗� = 𝑚0 𝑑(𝛾 �⃗�)/𝑑𝑡          and           𝐹′⃗⃗⃗⃗ = 𝑚′0 𝑑(𝛾′ 𝑣′⃗⃗ ⃗⃗ )/𝑑𝑡′                                     (10) 

a) As the experiment takes place in Σ, you must choose:            𝑚′0 =  𝛾0 𝑚0       

                                                                            with :            𝛾0 =  1 /√1 − 𝑢2/𝑐2                      

b) From equation (9a), let's express 𝑑𝑣⃗⃗ ⃗⃗⃗      as a function of    𝑑𝑣′⃗⃗⃗⃗⃗⃗⃗ :  

                                                                                𝑑𝑣⃗⃗ ⃗⃗⃗ = (1 −  �⃗⃗� 𝑣′⃗⃗ ⃗⃗ /𝑐2)𝑑𝑣′⃗⃗⃗⃗⃗⃗⃗  − (�⃗⃗� 𝑑𝑣′⃗⃗ ⃗⃗ ⃗⃗ ⃗/𝑐2)(𝑣′⃗⃗ ⃗⃗ +  �⃗⃗�)          (11)                                  

c) Now let's express  𝑑(𝛾 �⃗�)    and    𝑑 (𝛾′ 𝑣′⃗⃗⃗ ⃗) : 

            𝑑(𝛾 �⃗�) = 𝑑𝛾 �⃗� +  𝛾 𝑑𝑣⃗⃗ ⃗⃗⃗ =  𝛾3(�⃗� 𝑑𝑣⃗⃗ ⃗⃗⃗/𝑐2) �⃗�  + 𝛾 𝑑𝑣⃗⃗ ⃗⃗⃗ 

             𝑑(𝛾 �⃗�) = (�⃗� 𝑑𝑣⃗⃗ ⃗⃗⃗/𝑐2) �⃗�  + 𝛾 𝑑𝑣⃗⃗ ⃗⃗⃗ 

             𝑑 (𝛾′ 𝑣′⃗⃗⃗ ⃗) = (𝑣′⃗⃗ ⃗⃗  𝑑𝑣′⃗⃗ ⃗⃗ ⃗⃗ ⃗/𝑐2) 𝑣′⃗⃗ ⃗⃗  + 𝛾′ 𝑑𝑣′⃗⃗⃗⃗⃗⃗⃗ 

 
3 Cf. note "Another approach to relativity". In this approach, there is no dilation of space and time. The frame of 
reference in which the experiment takes place is different from the other frames of reference, and the change 
of coordinates is no longer one-to-one. The coordinate change equations are modified in relation to the Lorentz 
formulae of special relativity. 
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d) Let's continue the calculation by expressing 𝑑(𝛾 �⃗�) as a function of  𝑣′⃗⃗⃗ ⃗   and 𝑑𝑣′⃗⃗⃗⃗⃗⃗⃗ : 

             𝑑(𝛾 �⃗�) =  𝛾 𝑑𝑣⃗⃗ ⃗⃗⃗ +  (�⃗� 𝑑𝑣⃗⃗ ⃗⃗⃗/𝑐2) �⃗� 

                           =   𝛾 (1 −  �⃗⃗� 𝑣′⃗⃗ ⃗⃗ /𝑐2)𝑑𝑣′⃗⃗⃗⃗⃗⃗⃗  − (�⃗⃗� 𝑑𝑣′⃗⃗ ⃗⃗ ⃗⃗ ⃗/𝑐2)(𝑣′⃗⃗ ⃗⃗ +  �⃗⃗�) + ((𝑣′⃗⃗ ⃗⃗ +  �⃗⃗�) 𝑑𝑣′⃗⃗⃗⃗⃗⃗⃗/𝑐2     )(𝑣′⃗⃗ ⃗⃗ +  �⃗⃗�)       

                           =   𝛾 (1 −  �⃗⃗� 𝑣′⃗⃗ ⃗⃗ /𝑐2)𝑑𝑣′⃗⃗⃗⃗⃗⃗⃗  + (𝑣′⃗⃗⃗ ⃗ 𝑑𝑣′⃗⃗ ⃗⃗ ⃗⃗ ⃗/𝑐2) (𝑣′⃗⃗ ⃗⃗ +  �⃗⃗�)       

From relation (9) we can easily derive :    𝛾 =  𝛾0 𝛾
′(1 +  �⃗⃗� 𝑣′⃗⃗ ⃗⃗ /𝑐2) which leads to :  

            𝑑(𝛾 �⃗�) =  𝛾0 𝛾
′𝑑𝑣′⃗⃗⃗⃗⃗⃗⃗  + (𝑣′⃗⃗⃗ ⃗ 𝑑𝑣′⃗⃗ ⃗⃗ ⃗⃗ ⃗/𝑐2) (𝑣′⃗⃗ ⃗⃗ +  �⃗⃗�)      

e) Now let's  add 𝑑 (𝛾′ 𝑣′⃗⃗⃗ ⃗) to the second member 

             𝑑(𝛾 �⃗�) =  𝛾0 (𝛾′𝑑𝑣′⃗⃗⃗⃗⃗⃗⃗  + (𝑣′⃗⃗⃗ ⃗ 𝑑𝑣′⃗⃗ ⃗⃗ ⃗⃗ ⃗/𝑐2) 𝑣′⃗⃗⃗ ⃗) + (𝑣′⃗⃗⃗ ⃗ 𝑑𝑣′⃗⃗ ⃗⃗ ⃗⃗ ⃗/𝑐2) �⃗⃗�      

             𝑑(𝛾 �⃗�) =  𝛾0 𝑑 (𝛾′ 𝑣′⃗⃗⃗ ⃗) + (𝑣′⃗⃗⃗ ⃗ 𝑑𝑣′⃗⃗ ⃗⃗ ⃗⃗ ⃗/𝑐2) �⃗⃗�                                                                                           (12) 

f) Let's move on to the forces by multiplying the two members of equation (12) by 𝑚0/𝑑𝑡 : 

𝑚0𝑑(𝛾 �⃗�)/𝑑𝑡 =  𝛾0 𝑚0 𝑑(𝛾′𝑣′⃗⃗ ⃗⃗ )/𝑑𝑡 + 𝑚0 (𝑣′⃗⃗⃗ ⃗ 𝑑𝑣′⃗⃗ ⃗⃗ ⃗⃗ ⃗/𝑐2𝑑𝑡) �⃗⃗�    

Given relations (10), a) and the fact that 𝑑𝑡 = (1 + �⃗⃗� 𝑣′⃗⃗ ⃗⃗ /𝑐2) 𝑑𝑡′ , we get : 

�⃗� = (1 −  �⃗⃗� 𝑣′⃗⃗ ⃗⃗ /𝑐2)𝐹′⃗⃗⃗⃗  + 𝑚0 (𝑣′⃗⃗⃗ ⃗ 𝑑𝑣′⃗⃗ ⃗⃗ ⃗⃗ ⃗/𝑐2𝑑𝑡) �⃗⃗�    

Since we are neglecting terms of order𝑣4/𝑐4 , we can write : 

              𝑚0 (𝑣′⃗⃗⃗ ⃗ 𝑑𝑣′⃗⃗ ⃗⃗ ⃗⃗ ⃗/𝑐2𝑑𝑡) =  𝑚′0 (𝑣′⃗⃗⃗ ⃗ 𝑑𝑣′⃗⃗ ⃗⃗ ⃗⃗ ⃗/𝑐2𝑑𝑡′) =  𝑚′0 (𝑣′⃗⃗⃗ ⃗ 𝑑(𝛾′𝑣′⃗⃗ ⃗⃗ )/𝑐2𝑑𝑡′) 

In other words:                                                                      

 𝑚0 (𝑣′⃗⃗⃗ ⃗ 𝑑𝑣′⃗⃗ ⃗⃗ ⃗⃗ ⃗/𝑐2𝑑𝑡) = 𝐹′⃗⃗ ⃗⃗  𝑣′⃗⃗ ⃗⃗  /𝑐2 

 

The equation between the forces in the two reference frames is therefore written : 

                                                    �⃗� = (1 −  �⃗⃗� 𝑣′⃗⃗ ⃗⃗ /𝑐2)𝐹′⃗⃗ ⃗⃗  + (𝐹′⃗⃗ ⃗⃗  𝑣′⃗⃗ ⃗⃗ /𝑐2)�⃗⃗�  

                                                   �⃗� = 𝐹′⃗⃗⃗⃗ + (𝐹′⃗⃗ ⃗⃗  𝑣′⃗⃗ ⃗⃗ /𝑐2)�⃗⃗� − (�⃗⃗� 𝑣′⃗⃗ ⃗⃗ /𝑐2)𝐹′⃗⃗ ⃗⃗  

This can be expressed as : 

                                                   �⃗� = 𝐹′⃗⃗ ⃗⃗  +
1

𝑐2 𝑣′⃗⃗ ⃗⃗ ∧ (�⃗⃗� ∧ 𝐹′⃗⃗⃗⃗ )                                                                             (13) 

Remember that this equation is only valid in the weak relativistic case. 
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2. Interaction between two moving charges 

 

2.1. Case of a charge moving in a electrostatic field 4 

When a charge 𝑞’ moves in the electrostatic field created by a fixed charge 𝑞 , even if not radially, its 

movement is governed by Coulomb's law, which gives the force between the charges : 

          �⃗�  =  𝑞’ �⃗⃗�(𝑟)  =   (𝑞𝑞’/ 4𝜋 𝜀0 𝑟2) �⃗⃗�              

                                                                                                    �⃗⃗�(𝑟 ) being the electrostatic field vector.         

 

 

This is easy to understand if we refer to the energetic description of the interaction, which is analogous 

to the gravitational interaction.5     

 

 

 

 

 

 

 

 

In the case of a non-radial displacement, the displacement takes place in the plane containing the 

charges and the velocity vector. A rotation of the segment qq'  is added, which simply changes the axis 

along which the interaction takes place, without changing the energy exchanged. 

 

 

 

 

 
4 For the construction and properties of the electrostatic field, see note :  
"Properties of the electrostatic field. Link with the gravitational field". 
5 cf. note "Gravitational field, Fundamental Principle of Dynamics and Quantum Mechanics", paragraph 1.3.2. 
Interacting sources: energy exchanges between sources and field  

q �⃗⃗�           

q' 

�⃗� 

r 

q q' 

�⃗� dt 
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2.2. Case of two moving charges 

If, in the reference frame in which the experiment takes place, the two charges are mobile ( Σ ) , can 

we return to the previous case by a simple change of reference frame (Σ') leading to the immobilisation 

of one of the charges?  

This assumes, at the very least, that the velocity (�⃗⃗⃗� ) of one of the charges (q ) is constant in the 

reference frame of the experiment. 

 

In this case, because of the principle of relativity, Coulomb's law can be applied to determine the 

interaction force in the reference frame Σ ' where the charge q is fixed, and then transpose the result 

to the reference frame Σ using equation (13) obtained in paragraph 1.2. 

                                                                                        Let us first observe that the unit vector �⃗⃗⃗� (carried by 

the segment qq' ) is unchanged in the reference 

frame since there is no contraction of lengths in our 

approach to relativity. 

 In Σ', the force acting on the charge q' is therefore : 

                                𝐹′⃗⃗ ⃗⃗ = (𝑞𝑞’/ 4𝜋 𝜀0 𝑟2) �⃗⃗⃗� 

On the other hand, the correspondence with the notations in paragraph 1.2 is as follows: 

                                                      �⃗⃗� →  �⃗⃗�             �⃗� →  𝑉′⃗⃗⃗⃗              𝑣′⃗⃗⃗ ⃗ →   (𝑉′⃗⃗⃗⃗⃗ −  �⃗⃗�)/(1 −  �⃗⃗� 𝑉′⃗⃗⃗⃗⃗/𝑐2)   

Equation (13) becomes :            �⃗� = (𝑞𝑞’/ 4𝜋 𝜀0 𝑟2)( �⃗⃗⃗� +
1

𝑐2 (𝑉′⃗⃗⃗⃗⃗ − �⃗⃗�) ∧ (�⃗⃗� ∧ �⃗⃗⃗�)  )                                     (14) 

The Lorentz force is expressed as follows:(𝑉′⃗⃗⃗⃗⃗ − �⃗⃗�) is the velocity of the charge q' relative to the field 

created by the charge q.�⃗� is the sum of the electrostatic interaction force and a complementary force:    

                  

                                                        𝛥𝐹⃗⃗⃗⃗⃗⃗ =
1

𝑐2 (𝑞𝑞’/ 4𝜋 𝜀0 𝑟2) ((𝑉′⃗⃗⃗⃗⃗ − �⃗⃗�) ∧ (�⃗⃗� ∧ �⃗⃗⃗�)) 

Since𝜀0 𝜇0 = 1/𝑐2 , equation (14) can be written as : 

                                                       �⃗� = 𝑞′[(𝑞/ 4𝜋 𝜀0 𝑟2) �⃗⃗⃗� + (𝑉′⃗⃗⃗⃗⃗ − �⃗⃗�) ∧ (𝜇0𝑞/ 4𝜋 𝑟2)(�⃗⃗� ∧ �⃗⃗⃗�)]          

             

or:                                              �⃗� = 𝑞′( �⃗⃗� + (𝑉′⃗⃗⃗⃗⃗ − �⃗⃗�) ∧ �⃗⃗�)                                                                       (15) 

with:                                             �⃗⃗� = (𝑞/ 4𝜋 𝜀0 𝑟2) �⃗⃗⃗�                             electrostatic field vector                        

                                                       �⃗⃗� = (𝜇0𝑞/ 4𝜋 𝑟2)(�⃗⃗� ∧ �⃗⃗⃗�)                   magnetic field vector 

 

q 

�⃗⃗⃗�           

q' r 

�⃗⃗�           

𝑉′⃗⃗⃗⃗            Σ 
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2.3. Geometric approach 

The analysis in paragraph 2.2 derives the appearance of the magnetic field from the application of 

the theory of relativity.  

First of all, the magnetic field is in no way comparable to the electrostatic field or the gravitational 

field. Unlike the latter, we cannot attribute a physical reality to it, characterised by an energy that is 

exchanged with the sources. 

The magnetic field is a purely vector field, which should be considered as a tool to correct a calculation 

that does not fully model the interaction of charges with each other as they move. 

We will show that it is possible to recover equation (14) from a geometric approach, based on a 

physical understanding of electrostatic interaction, while remaining within the framework of 

classical mechanics. 

( 𝑈,⃗⃗⃗⃗  𝑌⃗⃗⃗⃗ , 𝑍 ) is a local orthonormal reference frame, with �⃗⃗⃗�  directed along qq' and 𝑍⃗⃗⃗⃗  perpendicular to 

the plane.   

 

 

 

 

 

 

2.3.1. Delayed interaction 

Let's look again at the interaction between two charges :6 

When the distance between the sources varies by dr, 

the variation in the interaction energy of the source q' 

is due to a withdrawal of energy from the field created 

by q , contained in the spherical shell Cq of thickness dr.   

 The energy captured by q' at point M at time t was 

emitted by q at time (𝑡 −  𝛥𝑡) , with: .      𝛥𝑡 = 𝑟/𝑐 

Emission therefore takes place when the load is at a 

point A such that:        𝐴𝑞⃗⃗⃗⃗⃗⃗ = �⃗⃗�Δt . 

The shift of𝛥𝑡 results in a rotation of the interaction line 

(from qq' in Σ' to Aq' in Σ ). 

 
6 See footnote 5 

Cq 

q q' 

M 

A 

dr 

 𝑉𝑢
⃗⃗ ⃗⃗

  
  

𝑉′𝑧
⃗⃗ ⃗⃗ ⃗⃗  

Plan ( , �⃗⃗⃗��⃗⃗� ) 

�⃗⃗⃗� 

�⃗⃗� 

𝑍 
�⃗⃗� 

𝑉′⃗⃗⃗⃗   

𝑞 𝑞′ 𝑉′𝑢
⃗⃗ ⃗⃗ ⃗⃗⃗

  
  

r 
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In section 2.3.2, we will see that the variation in rotation during a calculation increment is modified in 

Σ compared to Σ' , which leads to a corrective term being added to the calculation. 

A further correction is necessary because the variation in distance between the loads also differs from 

one reference frame to another (see paragraph 2.3.3). 

Note: to make the comparison, it is necessary to start from the same distance between the charges at 

the beginning of the interaction. We simply want to add to the calculation made in Σ' the correction 

linked to the variations in rotation and distance, all other things being equal. The relativistic calculation 

does not change the initial distance 𝑞𝑞′̅̅ ̅̅  between the two reference frames. 

To simplify writing, we reduce the length 𝑞𝑞′̅̅ ̅̅   to the unit in Σ', Δt is then reduced to 1/c; the 

displacement at a speed �⃗⃗� during this time is 𝑉⃗⃗⃗⃗  /c (which we will note  �⃗�). 

In view of the above remark , 𝐴 𝑞′̅̅ ̅̅ ̅ must also be reduced to 1 in Σ. 

On the other hand, the energy captured at M reaches q' after a period of time: .𝛥𝑡′ = 𝑀𝑞′̅̅ ̅̅ ̅/𝑐    The 

duration varies with the position of M.   The average duration of the energy exchange calculated over 

the whole shell is equal to  
4

𝜋
  𝑟/𝑐.   We will not examine the consequences of this time lag, which 

essentially means that the actions calculated also have to be shifted in time. 

 

Let's start by showing that the 𝑉′𝑧
⃗⃗ ⃗⃗ ⃗⃗  component of 𝑉′⃗⃗⃗⃗  is irrelevant: 

                                                                             𝑉′𝑧
⃗⃗ ⃗⃗ ⃗⃗    is  orthogonal to the plane( �⃗�, 𝑞𝑞′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ). 

Since :  𝐴𝑞′̅̅̅̅̅ =  𝑞𝑞′̅̅ ̅̅ = 1, the two triangles A'qq' and A'Aq' 

are identical. 

There is no change in rotation or distance.                            

 

We can therefore limit our calculations to the plane ( �⃗⃗⃗�,�⃗⃗�). 

 

2.3.2. Rotation variation                  

The diagram below shows the rotation of the line of interaction in the two reference frames: 

- in  Σ  (solid lines):           𝐴1𝑞′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ →  𝑞𝐴′2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗      (rotation 𝜃2)        𝐴1𝑞′

̅̅ ̅̅ ̅̅  = 1 so:   𝑞𝑞′̅̅ ̅̅̅ = 1 − 𝑣𝑢 

- in Σ' (dotted line):          𝑞𝑞′⃗⃗ ⃗⃗ ⃗⃗⃗ →  𝑞𝐴′1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗     (rotation 𝜃1)                                    𝑞𝑞′̅̅ ̅̅̅ = 1 

To obtain the angles at the order 𝑣2 we express the distances according to  �⃗⃗⃗� à the order 𝑣.        

 

 𝑣′𝑧
⃗⃗ ⃗⃗ ⃗⃗   

 �⃗�  

A 

 q  q' 

A' 
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                                                                                                       𝛼 =
𝑣𝑦

1
= 𝑣𝑦 

                                                                                                                  𝛽 =
 𝑣′𝑦

1+𝑣′
𝑢− 𝑣𝑢

= 𝑣′
𝑦 (1 − 𝑣′

𝑢 + 𝑣𝑢)      

                

                        𝜃2 =  𝑣′
𝑦 (1 − 𝑣′

𝑢 +  𝑣𝑢) − 𝑣𝑦 

                     𝜃1 =
 𝑣′

𝑦− 𝑣𝑦

1+𝑣′
𝑢− 𝑣𝑢

 

              = (𝑣′
𝑦 − 𝑣𝑦)(1 − 𝑣′

𝑢 +  𝑣𝑢)    

(𝜃2 − 𝜃1)    represents the variation in rotation of qq' as seen from the load q. It is its opposite that 

should be taken for the rotation seen from q'  that interests us: 

                                                     𝛥𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 =  𝜃1 − 𝜃2 =  𝑣𝑦 (𝑣′
𝑢 −  𝑣𝑢)                                                       (16) 

2.3.3. Distance variation 

For this calculation, in order to properly account for all terms of order 𝑣2 , we must express the distance 

qq' in Σ at this same order :      

                                                     𝑞𝑞′̅̅ ̅̅ = 1 − 𝑣𝑢 − 𝑣𝑦
2/2                    Let's say :   𝑋 = 1 + 𝑣′𝑢 − 𝑣𝑢 

- in Σ :      𝑞𝐴′2
̅̅ ̅̅ ̅̅ =  √(𝑋 −

𝑣𝑦
2

2
)2 + 𝑣′𝑦

2
= 𝑋√1 − 𝑣𝑦

2 + 𝑣′𝑦
2

= 𝑋 −
𝑣𝑦

2

2
+

𝑣′𝑦
2

2
 

               𝐴1𝑞′̅̅ ̅̅ ̅̅ = 1 

- in Σ' :     𝑞𝐴′1̅̅ ̅̅ ̅̅ =  √𝑋2 + (𝑣′
𝑦 − 𝑣𝑦)2 = 𝑋 +

1

2
(𝑣′

𝑦 − 𝑣𝑦)2 =  𝑋 +
𝑣𝑦

2

2
+

𝑣′𝑦
2

2
− 𝑣𝑦𝑣′𝑦 

              𝑞𝑞′̅̅ ̅̅ = 1 

 

- 𝛥𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = (𝑞𝐴′
2

̅̅ ̅̅ ̅̅ − 𝐴1𝑞′̅̅ ̅̅ ̅̅ ) − (𝑞𝐴′
1

̅̅ ̅̅ ̅̅ − 𝑞𝑞′̅̅ ̅̅̅) = −𝑣𝑦
2 + 𝑣𝑦𝑣′𝑦 

 

                                                     𝛥𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑣𝑦 (𝑣′
𝑦 −  𝑣𝑦)                                                                          (17)                 

                     

Finally, for a time shift equal to r/c , the delayed interaction results in : 

- a variation in the rotation of the segment joining the charges :  

                        𝛥𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 =
1

𝑐2 𝑉𝑦 (𝑉′
𝑢 −  𝑉𝑢)                                                                                     (18) 

    

-  a variation in the distance between the charges : 

                         𝛥𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒/𝑟 =
1

𝑐2 𝑉𝑦 (𝑉′
𝑦 − 𝑉𝑦)                                                                             (19)                                    

A'1 

 q α 

𝑣′𝑢𝑦
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗  

θ1 

𝜃2 = 𝛽 − 𝛼  

  q' 
 �⃗�  

β 

  𝑞𝑞′̅̅ ̅̅̅ = 1 in Σ ' 

𝐴1𝑞′̅̅ ̅̅ ̅̅  = 1 in Σ 

A'2 

A1 

�⃗⃗⃗� 

�⃗⃗� 

𝑣𝑦 

𝑣𝑢 

𝑣′𝑦 

𝑣′𝑢 

− �⃗�  

Plan ( , �⃗⃗⃗��⃗⃗� ) 
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2.3.4. Interaction force           

        

a) Corrective force linked to rotation :     

The diagram opposite shows that the corrective 

force 𝛥𝐹𝑦
⃗⃗⃗⃗ ⃗⃗⃗⃗   associated with a variation in 

rotation𝛥𝜃 , orthogonal to �⃗⃗⃗� , is:   𝛥𝐹𝑦 = 𝐹′𝛥𝜃 .        

Therefore, given equation (18):                                                                  𝛥𝐹𝑦 =
1

𝑐2 𝑉𝑦 (𝑉′
𝑢 −  𝑉𝑢) 𝐹′      (20)    

                                                        

b) Corrective force linked to distance variation : 

F' varying in 
1

𝑟2 , we have :                                                                           𝑑𝐹′ = −2 𝐹′ 𝑑𝑟

𝑟
 

The corrective force 𝛥𝐹𝑢
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ ,  associated with a variation in distance 𝛥𝑟 , 

must be calculated incrementally: 7                                                         ∫ 𝑑𝑟
𝛥𝑡

0
=

1

𝛥𝑡
∫

𝑡

𝛥𝑡

𝛥𝑡

0
𝛥𝑟 𝑑𝑡 =

𝛥𝑟

2
 

As a result:                                                                                                    𝛥𝐹𝑢 = − 𝐹′ 𝛥𝑟

𝑟
 

Given equation (19):                                                                                    𝛥𝐹𝑢 = −
1

𝑐2 𝑉𝑦 (𝑉′
𝑦 − 𝑉𝑦) 𝐹′     (21) 

 

Finally, the force in Σ is written:                 𝐹⃗⃗⃗⃗ = 𝐹′⃗⃗⃗⃗ +
𝐹′

𝑐2 (𝑉𝑦 (𝑉′
𝑢 −  𝑉𝑢) �⃗⃗� −  𝑉𝑦 (𝑉′

𝑦 −  𝑉𝑦) �⃗⃗⃗� )         (22) 

which takes the form:                                  �⃗� = 𝐹′(�⃗⃗⃗� +
1

𝑐2 (𝑉′⃗⃗⃗⃗⃗ − �⃗⃗�) ∧ (�⃗⃗� ∧ �⃗⃗⃗�))                                    (22a) 

This is equation (14). 

 

 

 

 

 

 

 
7 See note "Properties of the electrostatic field. Link with the gravitational field" paragraph 2.1. 
The time increments to be considered are equal to the refresh period of the field 

�⃗� 
�⃗⃗� 

�⃗⃗⃗� 

𝛥𝜃 

𝐹′⃗⃗⃗⃗  

𝛥𝐹𝑦
⃗⃗⃗⃗ ⃗⃗⃗⃗  

  q' 
  q 
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3. Comparison of the two approaches to the problem 

 

We have just seen that the relativity approach and the geometric approach lead to the same equation 

(14) or (22a). How can we explain this? 

 

3.1. Analysis of the relativity approach 

The corrective force is generated from equation (12), which is written as follows, substituting the 

notations used in paragraphs 2.2 and 2.3: 

                                           𝑑(𝛾 𝑉′⃗⃗⃗⃗ ) =  𝛾0 𝑑 (𝛾′ (𝑉′⃗⃗⃗⃗⃗ − �⃗⃗�)) + ((𝑉′⃗⃗⃗⃗⃗ − �⃗⃗�) 𝑑(𝑉′⃗⃗⃗⃗⃗ − �⃗⃗�)/𝑐2) �⃗⃗�    

Each term of the second member makes a contribution to the corrective force : 

- The first leads to:             𝛥𝐹1
⃗⃗ ⃗⃗⃗⃗ ⃗⃗ = −(�⃗⃗� (𝑉′⃗⃗⃗⃗⃗ − �⃗⃗�)/𝑐2)𝐹′⃗⃗ ⃗⃗  

or :                                                         𝛥𝐹1
⃗⃗ ⃗⃗⃗⃗ ⃗⃗ = −

𝐹′

𝑐2 (𝑉𝑢(𝑉′
𝑢 − 𝑉𝑢) + 𝑉𝑦(𝑉′

𝑦 − 𝑉𝑦)) �⃗⃗⃗�  

It is induced by the desynchronisation of time between the two reference frames (equation (8)). 

 

- The second gives :                    𝛥𝐹2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = (𝐹′⃗⃗ ⃗⃗  (𝑉′⃗⃗⃗⃗⃗ − �⃗⃗�)/𝑐2) �⃗⃗� 

or, since   𝐹′⃗⃗⃗⃗ =  𝐹′�⃗⃗⃗� :                    𝛥𝐹2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ =

𝐹′

𝑐2 (𝑉𝑢(𝑉′
𝑢 − 𝑉𝑢) �⃗⃗⃗�+ 𝑉𝑦(𝑉′

𝑢 − 𝑉𝑢)�⃗⃗� )  

This second term is derived from equation :                   𝛾 =  𝛾0 𝛾
′(1 + �⃗⃗�(𝑉′⃗⃗⃗⃗⃗ − �⃗⃗�) /𝑐2) 

This equation is simply the relationship between the total energies in the two reference frames, which 

is a consequence of the law of composition of velocities8 , and therefore also of the desynchronisation 

of time. 

It is not easy to give a physical interpretation to each part,𝛥𝐹1
⃗⃗ ⃗⃗⃗⃗ ⃗⃗  and𝛥𝐹2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , of the corrective force. 

 

Due to the deletion of two opposite terms, the sum of𝛥𝐹1
⃗⃗ ⃗⃗⃗⃗ ⃗⃗  and 𝛥𝐹2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  reduces to :                     

                                                                    𝛥𝐹⃗⃗⃗⃗⃗⃗ =
𝐹′

𝑐2 (− 𝑉𝑦(𝑉′
𝑦 − 𝑉𝑦)�⃗⃗⃗�+ 𝑉𝑦(𝑉′

𝑢 − 𝑉𝑢)�⃗⃗�) 

This equation is equation (22) of the geometric approach. 

 

 
8 Cf. note "Another approach to relativity", chapter 3. Relativistic approach based on the equivalence between 
mass and energy.  



12 
 

As we have seen, this approach starts by taking into account the delayed interaction between the 

charges, which induces a difference in rotation of the segment connecting them and in distance. The 

physical interpretation is obvious.  

 

3.2. Explanation of the equivalence of the two approaches 

How can we explain that the effect of the desynchronisation of clocks (relativity approach) is 

equivalent to the effect of the delayed interaction (geometric approach)? 

In the note entitled "Mass, energy and reference frames" we propose an explanation of the 

phenomenon of desynchronisation of clocks observed between two reference frames in relative 

motion, inspired by Mach's principle: 9 

Desynchronisation reflects the time shift in the transmission of the gravitational interaction with the 

masses of the universe. 

Since the refreshment waves of the gravitational field and the electrostatic field have the same speed 

c , the offset corresponding to the distance𝑞𝑞′̅̅ ̅̅  between the charges is the same. 

 

In conclusion, it would appear to be abusive to consider the magnetic field as a consequence of the 

theory of relativity. All we can say is that the equations for changing coordinates induced by this theory 

allow us to obtain the correct evaluation of the field. 

 

 

 

 

 

 

 

 

 

 

 

 

 
9 See paragraph 4, reproduced in the appendix to this note. 
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Appendix: Extract from the "Mass, energy and reference systems" note 

 

4. Explanation of clock desynchronisation 

The desynchronisation of clocks between two frames of reference in relative motion results in 

observers seeing a distorted image of the other frame of reference at the same instant in one frame, 

since the clocks in the other frame mark different times depending on their position:  

According to equations (3): at time t in Σ:       [ x,t ] → [ x' = x - ut', t' = t – ux’/c2 ] 

                                                  at time t' in Σ':      [ x',t' ] → [ x1= x '+ ut1, t1 = t'+ ux1/c2 ] 

We have seen that, in the context of the theory of special relativity, [ x',t' ] gives back [ x,t ] because of 

the effect of the deformation of space and time, in addition to the effect of desynchronisation. 

The desynchronisation of clocks is linked to the existence of a speed limit.10 This is the speed of 

displacement of energy c : the speed of gravitational waves11 or electromagnetic waves, which is 

identical in all frames of reference. 

So how can we physically explain the phenomenon of desynchronisation? 

In a Galilean frame of reference, the operation of synchronising the clocks is based on the fact that, by 

definition of such a frame of reference, two identical experiments, offset by translation and rotation 

in space, take place with the same durations. Conversely, we could say that it is the fact of 

synchronising the clocks so as to assign the same duration to the experiments that makes the reference 

frame Galilean. 

Ernst Mach hypothesised that the inertia of material objects would be induced by all the other 

masses in the universe 

As a consequence of this hypothesis, the Galilean reference frames, considered, as we have seen, as 

massive "frames of reference", appear in some way to be "in equilibrium" with the rest of the universe, 

i.e. immobile in relation to the frame constituted by all the masses of this universe.12 

  

The question then arises: how can two Galilean reference frames in relative motion both satisfy this 

condition? 

Our answer is as follows: this is only acceptable if time cannot be considered as absolute; we must 

observe a time shift from one frame of reference to another.                                                                      

 
10  Cf. note "Another approach to relativity" paragraph 2.3. 
11As defined in the note  
"Gravitational field, Fundamental Principle of Dynamics and Quantum Mechanics" paragraph 1.1.3. 
12 The Wikipedia article on Mach's Principle states that local inertial reference frames are affected by cosmic 
motion and the distribution of matter. 
Julian Barbour and Herbert Pfiste (eds.), "Mach's principle: from Newton's bucket to quantum gravity". 
(proceedings of the conference held in Tübingen in July 1993), Boston, Basel and Berlin, Birkhäuser , coll. 
"Einstein studies" (no 6), August 1995, 1re ed. 

https://fr.wikipedia.org/wiki/Julian_Barbour
https://en.wikipedia.org/wiki/de:Herbert_Pfister
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In a Galilean frame of reference, interaction with the 

masses of the universe results in exchanges of energy 

at speed c (via field refreshment waves). 

For a point of abscissa x, the transmission of 

interactions along the Ox axis is shifted by a time          

T = x/c relative to the origin O of the reference 

frame. 

Let's now consider the reference frames Σ, assumed 

fixed, and Σ' moving at speed u along the Ox axis.                           

If time was absolute, the transmission offset along 

Ox’ in Σ' would be modified in Σ by the value:                  

ΔT’ = uT’/c = ux’/c2 

Since Σ' is Galilean, this variation in the offset must be compensated for by desynchronising the clocks 

of Σ' with respect to Σ.  

We find the expected relationship :                            t' = t - ux'/c2 

This result remains true if we consider interaction in any direction. If we denote by α the angle of this 

direction with respect to Ox', the shift is written : 

                                                                                             ΔT' = u (x' cosα/c) (u/ c cos α)=  ux'/c2 
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